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ABSTRACT

Modeling a Parallel Discrete Event Simulation to provide research into the execution of a war game
over multiple processors presents many challenges. Next generation war games are likely to execute
over a billion events, requiring several days to complete on a single processor.  Through the use of
multiple processors and advanced time management algorithms, the goal to run war games much
faster than real time is a reality.  This paper provides an overview of research at the Joint National
Test Facility using SES/workbench  to model a war game distributed over multiple processors. A
brief history of preliminary models is given.  Comparative results of these different models are given
which show the accuracy of the preliminary models.  Two models were then adapted to emulate the
anticipated computing load for War Game 2000 and the timing algorithms used in the Synchronous
Parallel Environment for Emulation and Discrete Event Simulation framework that are the main
focus of this paper.  One model described is transaction based and the other is data resource based.
Advantages and disadvantages of the two modeling paradigms are discussed throughout the paper.
Specific techniques used in these models are described in detail and show the adaptability of the
sequential SES/workbench tool to model a parallel discrete event simulation. We have modeled the
current command and control simulation using detailed data on processor and communications
resource usage.  A model of the new war game under development has also been constructed and
calibrated.  Time management algorithms have been prototyped.  This “sim of a sim” is poised to
reduce risk for development of current and future war games.

Introduction

The Parallel Discrete Event Simulation (PDES) environment presents many challenges in modeling.  The
Joint National Test Facility (JNTF) is well known for its war game facilities.  The Technology Insertion
Studies and Analysis (TISA) group has been tasked to support War Game 2000 (WG2K) development.
One task is to model the next generation war games with SES/workbench (SESWB) by emulating the
message traffic (several hundred thousand to possibly a billion messages) over multiple processors without
violating causality.  A second task is to use the SESWB tool to determine what hardware will provide the
best performance for WG2K.  We are currently building WG2K using the Synchronous Parallel
Environment for Emulation and Discrete Event Simulation (SPEEDES) framework to control the
synchronization process.  SPEEDES uses the Breathing Time Warp algorithm to achieve this
synchronization.  Breathing Time Warp is a combination of two optimistic synchronizing algorithms, Time
Warp (Jefferson 1985) and Breathing Time Buckets (Steinman 1991).
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Preliminary steps to building a PDES model included building a calibrated Advanced Real-time Gaming
Universal Simulation (ARGUS) Model, a parameterized Threat Load Model, an aggregated WG2K Model,
and a SPEEDES Model.  The ARGUS Model showed that an existing war-game scenario could be modeled
accurately (within 10%) with SESWB.  The Threat Load Model demonstrated how events could be
spawned from other events (i. e. missiles dropping boosters or launching Re-entry Vehicles (RV’s)).  The
aggregated WG2K Model provided a representation of a not yet existing WG2K at the early block 10 stage.
The SPEEDES Model was constructed to allow full representation of SPEEDES queuing and event
synchronization algorithms.

By modeling WG2K with the SPEEDES framework along with other hardware architectures, we have the
opportunity to measure performance speedup without running tests on the actual hardware represented in
the model.  The purpose of this paper is to describe the progress and specific techniques used to model the
WG2K message traffic and the SPEEDES framework with both the transaction and data resource based
paradigms.

Methods

The initial effort was to emulate the message traffic generated by an ARGUS scenario with a Commercial
Off the Shelf (COTS) product, SES/workbench.  Statistics were captured from the ARGUS run and used
as calibration data for the SESWB and Thread Builder (TB) ARGUS models.  Comparative statistics
included number of missiles, re-entry vehicles, interceptors, and the frequency and number of messages
sent between objects.  The ARGUS Model provided an opportunity to learn some of the capabilities of
SESWB (multi-module model, routing, etc.) and techniques that became very valuable for the eventual
WG2K Model.

A Threat Load Model then provided an opportunity to see how the load expands with different scenario
combinations.  Again, SESWB and TB models were created to compare with each other and the Excel

scenario spreadsheet listing objects and timing predictions.  The SESWB model is parameterized to allow
for back-to-back runs of different scenarios without requiring the model be rebuilt for each run.  This
model has been implemented as the threat load object for the aggregated WG2K Model.

Creation of the SESWB Aggregated WG2K Model allowed for a first look at potential bottleneck problems
such as the Host Router and gateways.  The Threat Load Model was re-used as the main module for the
multi-module WG2K Model (Figure 1 ).  The model is segmented to represent the various numbers of
instances for missile and radar objects.  SESWB allows great flexibility for creating multiple instances of
an object (or submodel) and passing on changes made in the original instantiation of the object.   All of the
instances inherit those changes when the model is built, thus saving much time when changes are made.
Message passing between separate modules is necessary to allow greater flexibility and provides a more
realistic representation of objects outside the main simulation module (MADSIM) for the projected WG2K.

Since a typical war game includes much human interaction, the simulation models an estimate of probable
responses and the time anticipated for making those responses.  In the current WG2K model, the Battle
Management Command, Control, & Communications (BMC3) initiates many messages on a periodic basis
and some on an irregular basis to emulate human input.  The irregular messages are usually responses to the
spawning of different scenario events such as missile launches.  In SESWB, this requires a broadcast of
these events to all submodels throughout the model since some submodels message number or size
depended on this information.
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Figure 1: The Aggregated WG2K Model - The WG2K_Launch main module was a copy of the Threat Load
Model with additional functionality added.  Space-Based InfraRed System (SBIRS), Battle Management Command,
Control & Communications (BMC3 - battle_mod), and the Host Router were in separate modules to show that they
were not a part of MADSIM which represents all sensors.

The major problem associated with the WG2K model is the routing of messages to specific instances of
objects.  Being a multi-module, multi-instance model, this requires some advanced techniques to send
information to or retrieve information from distant submodels.  Some messages are sent through a host
router (Figure 2 & 3) or a gateway to all instances of an object, while other messages are only be sent to a
specific instance of an object.  All of these problems are associated with the war game environment here at
the JNTF.  Various enhancements have been implemented as a result of these early models.

Figure 2: Host Router (transaction based)– Representation of the host router and network communications.
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Note that the data resource model (Figure 3) transfers the message to the processor (tempQ resource) and
then receives the processed message at get_HR_proc_in_msgs.  The rest of the sequence is the same except
the data resources are transferred into a resource box instead of directly routing the transaction.

Figure 3: Host Router (data resource based)– Representation of the host router and network communications.

Since WG2K has chosen the SPEEDES framework to distribute our war game over multiple processors for
maximum speedup, a separate SPEEDES Model was built to allow for the different queuing and timing
methods incorporated within SPEEDES.  Modeling of the SPEEDES framework proved to be quite
challenging due to the queuing and timing algorithms used within SPEEDES.  Following is a brief
description of the more important parts of SPEEDES modeled with SESWB.

SPEEDES assigns object processes to processors at the beginning of the simulation.  A SESWB card deal
model was developed to realistically represent this function.  To represent the same distribution as a Thread
Builder run, one must be certain that the objects are assigned in the same order as the spreadsheet input
used with Thread Builder.  Note that the only balancing used here is the number of objects per processor.
No load balancing occurs due to number of messages or message sizes being sent.

The parallel computing strategies used in SPEEDES begin with the Time Warp algorithm.  Time Warp uses
the virtual time3 paradigm first developed by Jefferson in 1985.  This paradigm represents an optimistic
approach to organize and synchronize distributed systems.  Since causality (you can’t send a message in the
past) is very relevant in war gaming, this presents a problem of major importance.  The system can not be
allowed to violate causality, but should be allowed to run ahead of wall clock time.  This paradigm uses
anti-messages to rollback time and cancel messages that were processed and sent optimistically with a time
ahead of Global Virtual Time  (GVT) that corresponds to the earliest time stamp of any message in the
simulation.

To keep the separate processors from “running away” from the rest of the system, two timing elements are
used.  A global clock (Figure 4) keeps the systems GVT and each processor keeps track of it’s own Local
Virtual Time (LVT).  SPEEDES uses a set of flow control variables to notify the system when it is time to
update GVT.  GVT will be updated periodically if a certain amount of time (tgvt) has passed without a
GVT update caused by some other factor.  Keeping track of messages (events) processed also causes GVT
updates.  SPEEDES allows all messages with a time stamp less than GVT to be processed and sent



5

immediately.  A set number of Nrisk messages (messages with a time stamp > GVT) are also allowed to be
processed, but a copy of these messages is kept until a GVT update occurs.  After a set number of messages
are processed and sent from a processor, that processor notifies the system that it thinks GVT should be
updated.  After all processors have voted to update GVT, the system interrupts all processors and waits for
all sent messages to be flushed from the communications network.  The system then checks each of the
processors’ LVT and updates GVT to the earliest LVT. This meant that the SESWB model needs each
processor instance keep track of its own set of variables.

Figure 4: The Global Clock – This submodel periodically cycles through the queue_timer.  If it is time to update
GVT or all processors have voted to update GVT, the system: (1) interrupts all processing at interrupt_to_sync_GVT,
(2) waits for all messages to be flushed from the communications system, and then (3) decides what GVT should be
updated to (the earliest LVT) at change_GVT.

The queuing system used in SPEEDES also presents some unique problems.  Each processor requires two
ordered queues, a temporary queue and a Qheap.  SPEEDES actually has a Qheap for each object assigned
to the processor, but for simplicity sake, only one Qheap is in the current SESWB model.  Both queues
require a merge sort routine to order the messages by their time stamp upon arrival.  SESWB makes this
simple to create through the use of multiple instances of an object, but the communication of variable
values in different instances does become quite complex.

The temporary queue (Figure 5) requires the ability to check each incoming message time stamp.
Messages that are in the correct timing sequence are added to the end of the queue.  Due to a requirement
of SPEEDES to know the time stamp of the first message in the temporary queue, a double block is
necessary to separate the first message from the rest of the queue.  Incoming messages are blocked once a
straggler message (an out of sequence message) arrives at the temporary queue that causes it to be
reordered.  A straggler message requires all messages in the queue be looped through in the tempQ_merge
submodel (Figure 6 ) to determine the correct position to insert the straggler message.  After the messages
have been reordered the messages are reentered into the temporary queue and the blocked incoming
messages are then released to enter the temporary queue.

Figure 5 (transaction based): The Temporary Queue – An arriving message has its time checked at
check_order.  If the message has a time greater than the last message in the temporary queue, the message becomes the
last in the queue.  Otherwise, the message sets a block condition at block_to_sort and then proceeds to the
merge_to_tempQ submodel along with all messages in the temporary queue (includes messages at release_one) to
allow the new message to be merged into the correct position.  Messages return to the temp_Queue submodel after they
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are placed in the correct order and are blocked at wait_for_sort.  After all messages have returned, they are then
returned to the temporary queue and any message at the block_to_sort node is released sequentially.

Figure 6 (transaction based): Merging into the Temporary Queue – An arriving straggler message has its
time compared with messages already in the temporary queue.  All messages are then returned to the temporary queue
in the correct order by time stamp.

The two submodels in Figures 5 & 6 are combined in the data resource based model’s temp_queue (Figure
7).  Note that no blocking is required when a message first arrives in the submodel because there is only
one transaction populated in the submodel at msg_arrives, which therefore automatically provides a
blocking condition.  The amount of coding for the data resource submodel is much less than the
transaction-based submodel.  This version of the temporary queue has the functionality of comparing the
incoming message time stamp with that of the first message in the queue.  If the incoming message needs to
be placed in the front, all messages are moved down one position in the temporary queue without
comparing each time stamp and the incoming message is placed at the front of the queue.  The loop for
inserting a message in the middle of the temporary queue avoids having to sort through the rest of the
messages after the position for the incoming message has been found.

There are two conditions that result in the temporary queue being merged with the QHeap.  The first
condition involves a parameter for the maximum capacity set for the temporary queue size.  Once this value
is reached, all messages in the temporary queue are then merged into the QHeap.  The second condition
occurs if the temporary queue has been idle for a set amount of time that is monitored by the Global Clock.
This passage of time also causes a merge of the two queues.

This is basically the same as the transaction based paradigm with the exception that a full temporary queue
is added directly to the QHeap if the first temporary queue message time is greater than the last QHeap
message time.  Once again this avoids having to loop through all of the QHeap messages unless the two
queues need to be merged.  If the two need to be merged, the temporary queue is dumped into a
temp_QHeap resource to merge together with the QHeap.
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Figure 7 (data resource based): The Temporary Queue – Messages are entered into the temporary queue one
at a time, either at the end, in the middle, or at the front.  Once the temporary queue is full, those message are added
either to the end of the QHeap or placed in a temp_QHeap resource to be merged with messages in the QHeap.

Once the temporary queue is full, the temporary queue messages must be merged into the correct order
with the QHeap (Figure 8 & 9 ) messages to wait for processing.  Messages are released to the
block_tempQ or block QHeap nodes one at a time.  The earlier time stamped message then advances to the
wait_for_finish node.  This process is repeated until all messages have been merged together.  A slight
delay is implemented before the messages are returned to the QHeap.  Once again a double block
mechanism (hold_queue and wait_for_merge) was required to allow the first message of the queue to be
separated from the rest of the messages in the QHeap.  The data resource model has the advantage of
reusing the main body of the temporary queue with a change for the data resources being accessed.
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Figure 8 (transaction based): The QHeap – The merging of the two queues requires a comparison of one
message from each queue at a time.  The earlier message is released at either block_tempQ or block_Qheap.  The first
message in the Qheap waits for the processor at the wait_for_merge node.

Figure 9 (data resource based): The QHeap – The merging of the two separate queues provides reuse of the
same sequence used in the temporary queue uses.

When a processor becomes available, it needs to allow the next ordered message to enter either from the
temporary queue or the QHeap.  This situation presents an interesting problem because the processor needs
to check both its temporary queue and its QHeap to decide which message had the earliest time stamp.  A
double block mechanism (release_one and temp_queue for the temporary queue) is required in SESWB to
solve this problem in the transaction-based paradigm.  By separating the first message in each queue from
the rest of the queue, the processor only looks at the first message time of each queue (since the queues are
already ordered) and decides which message should access the processor next.  After the selected message
enters the processor, the queue that released that message must move the next ordered message up to the
first block node.
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SPEEDES uses flow control parameters to determine the phase that Breathing Time Warp is in (Figure
10).  The model functions in normal mode when messages arrive at the processor with a time stamp less
than GVT. When messages arrive with a time stamp greater than GVT and the number of Nrisk_msgs is
less than Nrisk_max (maximum number of optimistically processed and sent messages), SPEEDES enters
the Time Warp phase.  Once the number of Nrisk_msgs equals Nrisk_max, SPEEDES moves to the
Breathing Time Buckets phase.  Either after all processors have asked for a GVT update or a certain
amount of time has elapsed, the GVT phase begins.  All processors are interrupted and wait for all
messages in transit to arrive at their destinations.  Nrisk message copies are then cleared and then Nopt
messages are committed and sent.

•Time Warp - Fully Optimistic Processing but Risky (Can Cause rollbacks) Nrisk_msgs
•Breathing Time Buckets -- Optimistic but Risk-free  Nopt_msgs
•GVT -- Quasi-periodic Update of Simulation Time -- Sets Extent of Rollback Into Past
•Message Flush -- Synchronization of Message Queues for Causality
•Spin Busy - Nopt_max total surpassed, wait for GVT update
•Commit -- Flush Rollback Buffers of Old Copies of Events

  Flush Msgs

Event Synchronization for the Breathing Time Warp Algorithm

Time Warp

Breathing Time Buckets

GVT  Spin Busy

 Commit

Normal SPEEDES Cycle (0.1 -- 1.0 Sec)

Figure 10: Event Synchronization for the Breathing Time Warp Algorithm
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Messages routing in the processor (Figure 11 & 12) show additional paths besides those that are
determined by the Breathing Time Warp phase.  Since copies are only needed for outgoing messages, the
incoming csc messages are processed and returned without copies being made. Each anti-message is sent to
the processor that received the original optimistically processed message and labels that message canceled
in the temporary queue, QHeap, or the processor where it resides.  That message is then removed from the
system when it tries to access the processor.

Figure 11 (transaction based): The Processor Node – Messages are selected from the temporary queue or
QHeap by their time stamp order if a resource token is available.  Messages enter the processor, receive the resource
token, and are then processed at process_event.  If a GVT update occurs, the message is interrupted and then blocked
until the GVT is updated.  An uninterrupted message leaves the process_events node, releases its token, and checks the
first messages waiting in each queue at release_next_msg.  The earlier of the two messages are then released to enter
the processor.  These messages then have three possible paths to take, send messages that have a time stamp earlier or
equal to GVT, make a copy and send messages if the Nrisk_count is less than Nrisk, or store messages in Nopt_events
to wait for a GVT update.  If a straggler message arrives at the processor, an anti message is sent or a message at the
Nopt_events node is cancelled.  The time stamp for the first message at Nrisk_queue is stored to determine if an anti-
message needs to be sent or a message at Nopt_events needs to be cancelled.  If the straggler message time is less than
the first Nopt_events time, the Nrisk_queue is looped through to send an anti-message for any message sent with a time
stamp greater than the straggler message time.  If the straggler message time is larger than the first Nopt_events time,
the Nopt_events are looped through to cancel any messages with a time stamp greater than the straggler message time.
NOTE: This model does not actually send anti-messages!  It is only simulated they are sent.
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Figure 12 (data resource based): The Processor Node – The next message is selected by comparing the time
stamp of the first message in each queue.  Both loops are identical except the resource being accessed (reuse again).  If
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the message is labeled canceled or as an anti-message, it is not sent on to another processor or copied.  The bottom
loops are again nearly identical.  The Nrisk portion send anti-messages or empties messages from Nrisk after a GVT
update.  The Nopt portion cancels messages or sends them to the next processor after a GVT update.

Results

Both SESWB WG2K Models were calibrated to an Excel spreadsheet scenario and matched the results of
the Thread Builder Model and the predicted results of the spreadsheet. Both models provide an accurate
representation (within 10%) of predicted message traffic for WG2K as indicated by the current spreadsheet
analysis (Figure 13).  Message traffic was monitored during the simulation run to watch potential
bottlenecks.  A large part of the model is parameterized to allow greater flexibility in changing the scenario
script at run time. The host router correctly relays messages between objects.  The model of the
communications network is parameterized to allow for inputs to represent different network architectures.
A parameter is also included to allow for different speed processors.

CSC Estimate SES

BMS 64 64
RV 6,182 6,144

BMC3 216,706 222,360
SBIRS 2,659 2,724
IFICS 2,080 2,353
GBR 9,691 9,640
XBR 9,711 9,641

UEWR 291,300 287,346
*total 543,167 545,146

Figure 13: Calibration Results – This table represents the number of messages sent by some of the CSC’s
(Computer Software Component) in WG2K.  The estimate column was obtained from a spreadsheet analysis estimate
and the SES column shows the results from the SES WG2K model. *NOTE: This total includes other CSC’s not listed.

The SESWB SPEEDES Model accurately emulates the processes contained in the SPEEDES framework.
Parameters were implemented to allow the same flexibility that exists within SPEEDES.  The queuing
theories are properly represented and both timing algorithms in Breathing Time Warp, Time Warp and
Breathing Time Buckets, were correctly implemented in the SESWB model.  Experiments were run on the
separate SPEEDES model to validate the two causes for updating GVT, the passing of a limited amount of
time without an update or all processors ask for an update).  Message times were scrambled to cause
straggler messages to arrive at the temporary queue and the processor.  The queuing and interrupt functions
worked as expected.  The functions for sending anti-messages or canceling of messages not already sent
due to the arrival of a straggler message both worked as expected.

Discussion

The ARGUS Model is a simulation of an already existing ARGUS simulation.  Message traffic and the
scenario timing were successfully modeled.  Individual and overall message totals were calibrated to within
10% (most were within 1%) based on the profile data generated from an actual simulation scenario.  The
experience gained led to efficient simulation of the emerging WG2K scenario.

The WG2K Model represented the anticipated WG2K in advance of code development.  This model was
based on anticipated functionality, estimated lines of code, and operational message sets.  It was calibrated
to within 10% to the input spreadsheet and the results from the Thread Builder model.

Both the ARGUS and WG2K models allow us to demonstrate potential scalability to larger and faster
processing power.  Communications were modeled to show potential speedup due to faster communication
links.
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The innovation was using SESWB, a sequential modeling tool, to model time management algorithms for a
PDES.  In particular, the SPEEDES model represented the Breathing Time Warp algorithm used in
SPEEDES.
Although both modeling paradigms were capable of achieving the same results, the data resource paradigm
provide reuse of many concepts and much less coding required.  Although memory usage (Figure 14)
varied and does not appear to be a major factor, the transactions based model slowed considerably at sim
time 1680.  Another important item to note is the data resource model had much more functionality added.
In particular was the addition of actually sending anti-messages in the data resource model that created an
added load on message traffic.   The transaction-based model only simulated sending the anti-messages.
Despite the added load, the data resource model was still 2.6 times faster than the transactions-based
model!

Transaction vs. Data Resource Statistics

Sim Time           Transaction-Based Model       Data Resource Model
Size Size

    260  13  15
    280  14  15
    764  17  20
  1680  20  20
  1700  25  20
  1720  27  20
  1780  28  31
  1800  30  31

             Run Time = 51:16 min Run Time = 19:35 min
       Took 1:06 to run 20 sim tics at                    2.6 times faster!!!

                                             one point!

Figure 14: Comparison Statistics
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